
Code Modification
Going beyond the basics and modifying the game's code.

Using GDB with Ghidra and melonDS
Setting Up Code Modifications
Porting old patch syntax to NCPatcher
Porting old patches to the NSMB Code Reference

Using GDB with Ghidra and
melonDS
What you'll need:

The latest version of Ghidra
A build of melonDS that has the GDB enabled

The easiest way to get this is to grab a GitHub action build of melonDS. You can
find that here. (Note: you'll need to be signed into a GitHub account to download
these builds)

The GNU ARM Embedded Toolchain installed on your system
A Ghidra database of NSMB DS

Eventually, NSMB Central will host a shared Ghidra project so we have one
centralized project anyone can contribute to. For now, you can generate a Ghidra
project using this tool. If you need help, please ask in our Discord!

Configuring melonDS
To enable the GDB, you need to do the following:

1. Click on the Config menu at the top of the emulator, then click on Emu Settings
2. Click on the Devtools tab
3. Check Enable GDB stub

4. If you do not see the Devtools tab, then you have not built melonDS with GDB
enabled. Please check the link at the start of the guide to find a download with GDB
enabled or build it yourself enabling GDB in CMake

Setting up Ghidra
To begin, open your Ghidra project in the code viewer as you normally would.

1. Click on File -> Configure, which should open a list of tools

melonDS is ready to go!

https://github.com/NationalSecurityAgency/ghidra/releases/tag/Ghidra_11.0.3_build
https://github.com/melonDS-emu/melonDS/actions
https://developer.arm.com/downloads/-/gnu-rm
https://github.com/Ed-1T/NDS-Decompilation-Project-Maker/releases/tag/v1.2

2. Check the "Debugger" box

This should cause windows to appear in your current project, likely making the following steps
redundant. If you are unable to find a window, the following steps will either open the window, or
present it to you in the project.

Creating a Debugger Target

To begin, open the Debugger Targets window by navigating to Windows -> Debugger -> Debugger
Targets.

The window should look something like this:

As you'll notice, there is an active connection in the

screenshot but nothing on your end...let's fix that!

Click on the button to open the connect window.

If you are on Linux:
Choose gdb in the dropdown
Set arm-none-eabi-gdb -ex "set arch armv5t" as the GDB Launch Command

This method has been tested on Linux and macOS. You should be able to follow these steps
using WSL on Windows. Follow this guide if you need help setting up WSL.

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/image.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/gjbimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/ci5image.png
https://learn.microsoft.com/en-us/windows/wsl/install

If you have not added arm-none-eabi-gdb to your PATH, you'll need to provide the
absolute path

Click

If you are on macOS
Choose gdb via SSH in the dropdown
Set arm-none-eabi-gdb -ex "set arch armv5t" as the GDB Launch Command

If you have not added arm-none-eabi-gdb to your PATH, you'll need to provide the
absolute path

Set SSH hostname to localhost
Set SSH username to your username

You can use the command whoami in the terminal to get your username if you
don't know it

Click

If you are on Windows

This still needs to be tested on Windows. This guide will be updated when steps
have been made

Connecting to melonDS
The gdb interpreter should have opened for you when you connected to the debugging target.

If you have lost the interpreter window, open the objects window (Window ->
Debugger -> Objects) and click on to bring the menu back

In melonDS, open your ROM. (You can either boot directly to the game or launch the
firmware)

Now, in the interpreter menu, run the command target remote localhost:[ARM9 Port] (Where
[ARM9 Port] is the ARM9 Port set in the Devtools tab.)

By default, it should be 3333. The command would be target remote
localhost:3333

If melonDS pauses after running this command, GDB is now talking to melonDS

You have now created a Debugger Target

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/Z1Gimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/Z1Gimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/WSwimage.png

If the connection immediately closes after running the command: change the ARM9
port to something else, restart melonDS, and close the current GDB connection.

Using Breakpoints
If you would like to set breakpoints, you'll need to use the Dynamic PC

1. Open the Dynamic PC window by clicking Window -> Listing -> Dynamic - Auto PC,
[...]

1. If you do not see this option, you can alternatively open it via Window ->
Debugger -> New Dynamic Listing

2. Next, open the Modules window by clicking Window -> Debugger -> Modules
3. Lastly, click on in the Modules window.

Now, setting a breakpoint in your code view should set a breakpoint in the Dynamic PC

Breakpoints will only update if the emulator has hit a breakpoint or has been
paused by pressing

You have now connected Ghidra to melonDS

You have now set up Ghidra to debug melonDS. Happy coding!

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/BeZimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/ED1image.png

Setting Up Code
Modifications
So, you're ready to dive into the code of the game? Let's get started!

Set up the NSMB DS Code Template
Set up ARM GCC
Set up NCPatcher
Extract/Build your ROM

Setting Up the Code Template
1. Head over to the code template's GitHub
2. Click on Code -> Download ZIP
3. Now extract this zip and rename the folder to what you want to call your project (this will

be referred to as your project root)

4. Don't put any spaces in your folder name!

Setting up ARM GCC

1. Head to the Arm GNU Toolchain Download Page
2. Now search (using CTRL/CMD + F) for AArch32 bare-metal target (arm-none-eabi)

and download the correct installer for your operating system.
3. Open the installer and install the toolchain.

4. Pick a location without spaces to install the toolchain!

In this tutorial, you will learn how to:

This guide will cover the "NCPatcher Standalone" method described in the code template as
the steps are more synchronized between all operating systems.

You have now set up the code template

https://github.com/MammaMiaTeam/NSMB-Code-Template
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

Setting Up NCPatcher
1. Head over to the NCPatcher GitHub releases page
2. Download the latest release for your operating system
3. Extract NCPatcher

Now, NCPatcher depends on ncpatcher.json, so lets make it!

In your project root, create the following files:

ncpatcher.json
Copy/Paste the following JSON into the file

You have now set up ARM GCC

If you'd like to learn more about this file, head over to the NCPatcher GitHub!

{
"$arm_flags": "-masm-syntax-unified -mno-unaligned-access -mfloat-abi=soft -
mabi=aapcs",
"$c_flags": "-Os -fomit-frame-pointer -ffast-math -fno-builtin -nostdlib -
nodefaultlibs -nostartfiles -DSDK_GCC -DSDK_FINALROM",
"$cpp_flags": "-fno-rtti -fno-exceptions -std=c++20",
"$asm_flags": "-Os -x assembler-with-cpp -fomit-frame-pointer",
"$ld_flags": "-lgcc -lc -lstdc++ --use-blx",

"backup": "backup",
"filesystem": "nsmb",
"toolchain": "arm-none-eabi-",

"arm7": {},
"arm9": {
"target": "arm9.json",
"build": "build"
},

"pre-build": [],
"post-build": [],

"thread-count": 0
}

“

https://github.com/TheGameratorT/NCPatcher/releases/
https://github.com/TheGameratorT/NCPatcher

Extracting, Building, and Repackaging Your ROM
If you're on Windows

1. Download fireflower.zip and extract it.
2. Move nds-build.exe and nds-extract.exe out from the folder

If you're on macOS/Linux

1. Download nds-extract.zip
2. Download nds-build.zip

If these links are down, you can also find these files in our Discord
3. Extract both ZIPs

Now, you need to build the tools.

For NDS Extract:

1. Open a new Terminal window in the folder of the code
2. Run this command: g++ nds-extract.cpp -o nds-extract -std=c++20

For NDS Build:

1. Open a new Terminal window in the folder of the code
2. Run this command: g++ nds-build.cpp -o nds-build -std=c++20

Extracting Your ROM
1. Open a Terminal window in your project root
2. Run this command: /path/to/nds-extract rom.nds nsmb

This will extract the contents of your ROM into a folder named nsmb

You have now set up NCPatcher

From here on, the instructions will work for all operating systems. If you are on Windows 10,
you can use Command Prompt instead of Terminal

Replace /path/to/ with the actual file path to nds-extract. Also replace "rom" with the actual
name of your .nds file

https://github.com/MammaMiaTeam/Fireflower/releases/
https://server.ndymario.com/index.php/s/5ZgnBTSb36PAoj9
https://server.ndymario.com/index.php/s/pW7Psxp3bMbfCbg
https://discord.com/channels/399424476259024897/770726274690973736/1229837410976665600

Building Your ROM
This step will compile and patch your ROM with any code files found in the source directory in
your project root. The Code Template comes with a few examples included in the source
directory.

1. Open a Terminal window in your project root
2. Run this command: /path/to/ncpatcher

Repackaging Your ROM
nds-extract depends on buildrules.txt, so let's create it!

buildrules.txt
Copy/Paste the following text into the file:

This step will take the files form the nsmb folder and repackage them into a .nds file

You have extracted your ROM

Replace /path/to/ with the actual file path to ncpatcher

You have built your ROM

rom_header NSNDY/header.bin
arm9_entry KEEP
arm9_load KEEP
arm7_entry KEEP
arm7_load KEEP
fnt nsmb/fnt.bin
file_mode ADJUST
arm9 nsmb/arm9.bin
arm7 nsmb/arm7.bin
arm9ovt nsmb/arm9ovt.bin
arm7ovt nsmb/arm7ovt.bin
icon nsmb/banner.bin
rsa_sig nsmb/rsasig.bin
data nsmb/root
ovt_repl_flag 0xFF
ov9 nsmb/overlay9
ov7 nsmb/overlay7

“

1. Open a Terminal window in your project root
2. Run this command: /path/to/nds-build buildrules.txt NSMB.nds

Replace /path/to/ with the actual file path to nds-build.

You have repackaged your ROM

Porting old patch syntax to
NCPatcher
This page will help you understand how you can port any patching syntax to NCPatcher's.

You are searching through NSMBHD or NSMB Central and you find a shiny code patch, you rush and
put it in the source folder of your project only to find that a code patch is not compatible with your
code! That sucks.

So what can we do? For this example NSMB E3 Recreation's PlayerAnims.cpp code patch will be
used.

Step 1 - Investigation
Let's start by taking a look at PlayerAnims.cpp .

#include <nsmb.hpp>
#include <nsmb/extra/fixedpoint.hpp>

#define NAKED __attribute__((naked))

// Slow down rotation speed
NAKED void repl_02114DFC_ov_0A() { asm("MOV R5, #0xC00\nBX LR"); }

// Walking transition delay
void repl_0211667C_ov_0A() {}

void repl_02116698_ov_0A(Player* player, int id, bool doBlend, Player::FrameMode frameMode, fx32 speed, u16
frame) {
	// 3.75fx (0x3C00) is the max walk animation speed
	if (speed > (3.75fx / 2)) {
		speed = (3.75fx / 2);
	}

	if (player->animID == 2) {

We must now wonder, what kind of a patch is this? Is this an NSMBe type patch or a Fireflower type
patch?

By comparing common traits that each patcher uses we can guess what kind of patch type we are
dealing with.

NSMBe type patches:

Does not use attributes to declare patches, uses the function name. void hook_x() {}
Patches always follow the format <PATCH TYPE>_<ADDRESS HEX>_ov_<OVERLAY HEX> or
<PATCH TYPE>_<ADDRESS HEX> if you don't need to specify an overlay.
PATCH TYPE can only be hook , repl or nsub .

Fireflower type patches:

Uses attributes to declare patches. hook(X) void func() {}
Patches always follow the format <PATCH TYPE>(0x<ADDRESS HEX>, 0x<OVERLAY HEX>) or
<PATCH TYPE>(0x<ADDRESS HEX>) if you don't need to specify an overlay.
PATCH TYPE can only be hook , rlnk , safe or over .

Did you guess correctly what kind of patch we are working with?

		player->setBodyAnimationSpeed(speed);
	} else {
		if (player->animID == 1) {
			fx32 xvel = Math::abs(player->velocity.x);
			if (xvel >= 1.5fx) {
				player->setAnimation(2, doBlend, frameMode, speed, frame);
			} else {
				player->setBodyAnimationSpeed(speed);
			}
		} else {
			player->setAnimation(1, doBlend, frameMode, speed, frame);
		}
	}
}

// Force jump on anim 1
NAKED void nsub_02116A14_ov_0A() { asm("CMP R0, #1\nB 0x02116A18"); }

// Use anim 1
NAKED void repl_02116A2C_ov_0A() { asm("MOV R1, #1\nBX LR"); }

Click here to reveal the answer

NSMBe

Step 2 - Porting
This is a fairly simple process. Here is a list that shows the different patch syntax between the
patchers:

NSMBe Fireflower NCPatcher

hook safe ncp_hook

repl rlnk ncp_call

nsub hook ncp_jump

over ncp_over

ncp_repl

And here is an example comparing some of them:

These addresses are ficticious and purely for demonstration!

// NSMBe
void hook_02000000() {} // doSomethingPatch
void repl_0200A000() {} // doUnspecifiedPatch
void repl_02010000_ov_0A() {} // doWhateverOverlayPatch
// over does not exist in NSMBe

// Fireflower
safe(0x02000000) void doSomethingPatch() {}
rlnk(0x0200A000) void doUnspecifiedPatch() {}
rlnk(0x02010000, 10) void doWhateverOverlayPatch() {}
over(0x02159348, 52) static int stupidVar = 0x0215CA6C;

// NCPatcher
ncp_hook(0x02000000) void doSomethingPatch() {}
ncp_call(0x0200A000) void doUnspecifiedPatch() {}
ncp_call(0x02010000, 10) void doWhateverOverlayPatch() {}
ncp_over(0x02159348, 52) static int stupidVar = 0x0215CA6C;

An important thing to remember is that all values in NSMBe patches are always written in
hexadecimal without 0x prepended to them. In NCPatcher if you want to specify an hexadecimal
value you need to prepend 0x , otherwise the value will be interpreted as a decimal value!

Let's go back to PlayerAnims.cpp and try to apply these changes.

#include <nsmb.hpp>
#include <nsmb/extra/fixedpoint.hpp>

#define NAKED __attribute__((naked))

NAKED ncp_call(0x02114DFC, 10)
void slowDownRotationSpeed() { asm("MOV R5, #0xC00\nBX LR"); }

// Walking transition delay
ncp_call(0x0211667C, 10) void doNotJumpOnAnim2() {}

ncp_call(0x02116698, 10)
void customPlayerAnimator(Player* player, int id, bool doBlend, Player::FrameMode frameMode, fx32 speed, u16
frame) {
	// 3.75fx (0x3C00) is the max walk animation speed
	if (speed > (3.75fx / 2)) {
		speed = (3.75fx / 2);
	}

	if (player->animID == 2) {
		player->setBodyAnimationSpeed(speed);
	} else {
		if (player->animID == 1) {
			fx32 xvel = Math::abs(player->velocity.x);
			if (xvel >= 1.5fx) {
				player->setAnimation(2, doBlend, frameMode, speed, frame);
			} else {
				player->setBodyAnimationSpeed(speed);
			}
		} else {
			player->setAnimation(1, doBlend, frameMode, speed, frame);
		}
	}
}

The code should now compile!

If your code still doesn't work because it complains about some functions not being defined or not
existing then you might want to check this out as well: Porting old patches to the NSMB Code
Reference

What if the patch was an assembly .s file instead of C .c or C++ .cpp ? The process is the same.

Becomes

Step 4 - Tidying up
Even though the code should now be able to execute, it is still not in its optimal state. This part is
slightly more complicated because it requires understanding the code.

NCPatcher includes its own definition of __attribute__((naked)) which is ncp_asmfunc so we remove
that macro definition and use ncp_asmfunc instead.

NAKED ncp_jump(0x02116A14, 10)
void forceJumpOnAnim1() { asm("CMP R0, #1\nB 0x02116A18"); }

NAKED ncp_call(0x02116A2C, 10)
void useAnim1() { asm("MOV R1, #1\nBX LR"); }

hook_....:
 BX LR

ncp_hook(...)
 BX LR

#include <nsmb.hpp>
#include <nsmb/extra/fixedpoint.hpp>

ncp_asmfunc ncp_call(0x02114DFC, 10)
void slowDownRotationSpeed() { asm("MOV R5, #0xC00\nBX LR"); }

// Walking transition delay
ncp_call(0x0211667C, 10) void doNotJumpOnAnim2() {}

https://bookstack.nsmbcentral.net/books/new-super-mario-bros-ds/page/porting-old-patches-to-the-nsmb-code-reference
https://bookstack.nsmbcentral.net/books/new-super-mario-bros-ds/page/porting-old-patches-to-the-nsmb-code-reference

Now, take a look at the original purpose of repl_0211667C_ov_0A (now named doNotJumpOnAnim2) and
the code it targeted.

We can see that what we are doing is the following:

ncp_call(0x02116698, 10)
void customPlayerAnimator(Player* player, int id, bool doBlend, Player::FrameMode frameMode, fx32 speed, u16
frame) {
	// 3.75fx (0x3C00) is the max walk animation speed
	if (speed > (3.75fx / 2)) {
		speed = (3.75fx / 2);
	}

	if (player->animID == 2) {
		player->setBodyAnimationSpeed(speed);
	} else {
		if (player->animID == 1) {
			fx32 xvel = Math::abs(player->velocity.x);
			if (xvel >= 1.5fx) {
				player->setAnimation(2, doBlend, frameMode, speed, frame);
			} else {
				player->setBodyAnimationSpeed(speed);
			}
		} else {
			player->setAnimation(1, doBlend, frameMode, speed, frame);
		}
	}
}

ncp_asmfunc ncp_jump(0x02116A14, 10)
void forceJumpOnAnim1() { asm("CMP R0, #1\nB 0x02116A18"); }

ncp_asmfunc ncp_call(0x02116A2C, 10)
void useAnim1() { asm("MOV R1, #1\nBX LR"); }

ov10:02116678 CMP R0, #2
ov10:0211667C BEQ 0x021166A0
ov10:02116680 MOV R0, R5

Essentially we are just making it so BEQ 0x021166A0 will never jump to 0x021166A0 , but we are not
doing this efficiently because we jump from 0x0211667C to repl_0211667C_ov_0A and then back to
0x02116680 instead of just continuing. This wastes memory and CPU cycles, but it was the only way
of doing so in NSMBe . Instead we can write it like ncp_repl(0x0211667C, 10, "NOP") in NCPatcher,
making the instruction do nothing and just skip to the next one without using any more memory.

After evaluating all theses different cases, our optimal code should look like this:

ov10:02116678 CMP R0, #2
ov10:0211667C BL repl_0211667C_ov_0A
ov10:02116680 MOV R0, R5
//...
repl_0211667C_ov_0A:
 BX LR // return generated by the compiler

ov10:02116678 CMP R0, #2
ov10:0211667C NOP // Skips to the next instruction
ov10:02116680 MOV R0, R5

#include <nsmb.hpp>
#include <nsmb/extra/fixedpoint.hpp>

// Slow down rotation speed
ncp_repl(0x02114DFC, 10, "MOV R5, #0xC00")

// Walking transition delay
ncp_repl(0x0211667C, 10, "NOP")

ncp_call(0x02116698, 10)
void customPlayerAnimator(Player* player, int id, bool doBlend, Player::FrameMode frameMode, fx32 speed, u16
frame) {
	// 3.75fx (0x3C00) is the max walk animation speed
	if (speed > (3.75fx / 2)) {
		speed = (3.75fx / 2);
	}

	if (player->animID == 2) {
		player->setBodyAnimationSpeed(speed);
	} else {
		if (player->animID == 1) {

			fx32 xvel = Math::abs(player->velocity.x);
			if (xvel >= 1.5fx) {
				player->setAnimation(2, doBlend, frameMode, speed, frame);
			} else {
				player->setBodyAnimationSpeed(speed);
			}
		} else {
			player->setAnimation(1, doBlend, frameMode, speed, frame);
		}
	}
}

// Force jump on anim 1
ncp_repl(0x02116A14, 10, "CMP R0, #1")

// Use anim 1
ncp_repl(0x02116A2C, 10, "MOV R1, #1")

Porting old patches to the
NSMB Code Reference

