
Custom Actors
Sometimes the base game doesn't offer exactly what you need for your level. That's when you
should turn to custom actors!

Section 1 - The Boiler Plate
This is code you will be writing basically every time you go to create a custom actor. It is standard
practice to split your actor into two files  myActor.cpp  and  myActor.hpp

myActor.cpp

This guide provides a basic overview of how to create custom actors. A decent
understanding of C++ along with some prior NSMB code modding knowledge are
recommended for this tutorial.

#include "nsmb.hpp"
#include "myActor.hpp"

ncp_over(0x020c560c, 0) const ObjectInfo objectInfo = MyActor::objectInfo; //Stage Object ID 44 (use this in the 
editor)
ncp_over(0x02039a34) static constexpr const ActorProfile* profile = &MyActor::profile; //objectID 46

s32 MyActor::onCreate(){
	return true;
}

bool MyActor::loadResources() {
    return true;
}

s32 MyActor::onDestroy(){
	return true;
}

s32 MyActor::onRender(){
	return true;



This file is where you program your actor.

At the beginning of the file is where you define:

Where in the object bank table your actor's object info is stored. The array index is what
you place in the editor to "place" your object. In the sample above, it is replacing ID 44.
The beginning of this array is located at  0x020c529c
Where in the main process table your actor's profile is stored. The beginning of this array
is located at  0x0203997c

 Here's an overview of what these functions are usually used for:

Function Purpose

onCreate() This function is ran when your actor is first created. This
function is used for initalizing variables and anything that
should be done once.

loadResources() This function is called when the game is setting up your
actor.
[Todo]: Find the normal use case for this function.

onDestroy() This function is called when your Actor is being removed
from the stage. This function is used for cleaning up after
the actor (i.e. freeing resources).

onRender() This function is called every game tick while your actor is
in view of the camera. This is typically used for graphics
related code (for example, changing what texture an
NSBTX is currently drawing).

updateMain() This function is called every game tick while your actor is
loaded. This function is used for the main functionality of
your code (i.e. calculating positions, updating variables,
etc). 

myActor.hpp

}

bool MyActor::updateMain(){
	return true;
}

TODO: Expand this table with more functions you can override in a  StageEntity

#pragma once

#include "nsmb.hpp"



This file is where you store your instance variables and declare your functions.

Section 2 - State Machines
While not all Actors need to have a state machine, it can often times greatly improve the
readability and reliability of your code (state machines are also a strategy Nintendo used when
writing actors for the game). 

Defining the State Machine
In your  .hpp , you need to add the following:

class MyActor: public StageEntity {
public:
    virtual s32 onCreate() override;

    static bool loadResources();

    virtual bool updateMain() override;
  
    virtual s32 onRender() override;

    virtual s32 onDestroy() override;

    static constexpr u16 objectID = 46;

    static constexpr ObjectInfo objectInfo = {
        0, 0,
        0, 0,
        0, 0,
        0, 0,
        CollisionSwitch::None,
    };

    static constexpr u16 updatePriority = objectID;
    static constexpr u16 renderPriority = objectID;
    static constexpr ActorProfile profile = {&constructObject<MyActor>, updatePriority, renderPriority, 
loadResources};
};



In your  .cpp , here's what you need:

class MyActor: public StageEntity {
    /* ... */
  
    // Functions for the state machine. Add more as needed.
    void exampleState();
    void anotherExampleState();

    void (*updateFunc)(MyActor*);
	s8 updateStep;

    void switchState(void (MyActor::*updateFunc)());

    /* ... */
}

s32 MyActor::onCreate(){
  /* ... */

  // Initalize the current state
  switchState(&MyActor::exampleState);

  /* ... */
}

bool MyActor::updateMain(){
	/* ... */
  
    // Make sure to call the update function every tick
	updateFunc(this);
  
	/* ... */
}

bool MyActor::exampleState(){
    if (updateStep == Func::Init) {
        updateStep++;
        return;
    }



Using the State Machine
While the code may look intimidating, state machines are very intuitive once you start working with
them. 

Function/Variable Purpose

    if (updateStep == Func::Exit) {
        return;
    }
}

bool MyActor::anotherExampleState(){
    if (updateStep == Func::Init) {
        updateStep++;
        return;
    }

    if (updateStep == Func::Exit) {
        return;
    }
}

void MyActor::switchState(void (MyActor::*updateFunc)()) {
	auto updateFuncRaw = ptmf_cast(updateFunc);

	if (this->updateFunc != updateFuncRaw) {
		if (this->updateFunc) {
			this->updateStep = Func::Exit;
			this->updateFunc(this);
		}

		this->updateFunc = updateFuncRaw;

		this->updateStep = Func::Init;
		this->updateFunc(this);
	}
}



updateStep This variable keeps track of what update step the current
state is in.
 
1 (or Func::Init ) is used for when a state function is entered
for the first time. Useful for setting variables related to the
current state.
 
-1 (or  Func::Exit ) is used for when a state function is being
exited. Used for cleaning up any state specific code before
the code changes to the next state.
 
All other update step values can be used inside a step to
create "sub steps" via conditional code.

switchState() This function will swap the current state to the function
passed as a parameter. Call this function when you want
to change what state you are in.

TODO: Expand this page with more actor components (for example, colliders)

Revision #5
Created 19 February 2025 01:43:56 by Ndymario
Updated 23 February 2025 04:13:43 by keeper


