
Using GDB with Ghidra and
melonDS
What you'll need:

The latest version of Ghidra
A build of melonDS that has the GDB enabled

The easiest way to get this is to grab a GitHub action build of melonDS. You can
find that here. (Note: you'll need to be signed into a GitHub account to download
these builds)

The GNU ARM Embedded Toolchain installed on your system
A Ghidra database of NSMB DS

Eventually, NSMB Central will host a shared Ghidra project so we have one
centralized project anyone can contribute to. For now, you can generate a Ghidra
project using this tool. If you need help, please ask in our Discord!

Configuring melonDS
To enable the GDB, you need to do the following:

1. Click on the Config menu at the top of the emulator, then click on Emu Settings
2. Click on the Devtools tab
3. Check Enable GDB stub

4. If you do not see the Devtools tab, then you have not built melonDS with GDB
enabled. Please check the link at the start of the guide to find a download with GDB
enabled or build it yourself enabling GDB in CMake

Setting up Ghidra
To begin, open your Ghidra project in the code viewer as you normally would.

melonDS is ready to go!

https://github.com/NationalSecurityAgency/ghidra/releases/tag/Ghidra_11.0.3_build
https://github.com/melonDS-emu/melonDS/actions
https://developer.arm.com/downloads/-/gnu-rm
https://github.com/Ed-1T/NDS-Decompilation-Project-Maker/releases/tag/v1.2

1. Click on File -> Configure, which should open a list of tools
2. Check the "Debugger" box

This should cause windows to appear in your current project, likely making the following steps
redundant. If you are unable to find a window, the following steps will either open the window, or
present it to you in the project.

Creating a Debugger Target

To begin, open the Debugger Targets window by navigating to Windows -> Debugger -> Debugger
Targets.

The window should look something like this:

As you'll notice, there is an active connection in the

screenshot but nothing on your end...let's fix that!

Click on the button to open the connect window.

If you are on Linux:
Choose gdb in the dropdown
Set arm-none-eabi-gdb -ex "set arch armv5t" as the GDB Launch Command

This method has been tested on Linux and macOS. You should be able to follow these steps
using WSL on Windows. Follow this guide if you need help setting up WSL.

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/image.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/gjbimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/ci5image.png
https://learn.microsoft.com/en-us/windows/wsl/install

If you have not added arm-none-eabi-gdb to your PATH, you'll need to provide the
absolute path

Click

If you are on macOS
Choose gdb via SSH in the dropdown
Set arm-none-eabi-gdb -ex "set arch armv5t" as the GDB Launch Command

If you have not added arm-none-eabi-gdb to your PATH, you'll need to provide the
absolute path

Set SSH hostname to localhost
Set SSH username to your username

You can use the command whoami in the terminal to get your username if you
don't know it

Click

If you are on Windows

This still needs to be tested on Windows. This guide will be updated when steps
have been made

Connecting to melonDS
The gdb interpreter should have opened for you when you connected to the debugging target.

If you have lost the interpreter window, open the objects window (Window ->
Debugger -> Objects) and click on to bring the menu back

In melonDS, open your ROM. (You can either boot directly to the game or launch the
firmware)

Now, in the interpreter menu, run the command target remote localhost:[ARM9 Port] (Where
[ARM9 Port] is the ARM9 Port set in the Devtools tab.)

By default, it should be 3333. The command would be target remote
localhost:3333

If melonDS pauses after running this command, GDB is now talking to melonDS

You have now created a Debugger Target

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/Z1Gimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/Z1Gimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/WSwimage.png

If the connection immediately closes after running the command: change the ARM9
port to something else, restart melonDS, and close the current GDB connection.

Using Breakpoints
If you would like to set breakpoints, you'll need to use the Dynamic PC

1. Open the Dynamic PC window by clicking Window -> Listing -> Dynamic - Auto PC,
[...]

1. If you do not see this option, you can alternatively open it via Window ->
Debugger -> New Dynamic Listing

2. Next, open the Modules window by clicking Window -> Debugger -> Modules
3. Lastly, click on in the Modules window.

Now, setting a breakpoint in your code view should set a breakpoint in the Dynamic PC

Breakpoints will only update if the emulator has hit a breakpoint or has been
paused by pressing

You have now connected Ghidra to melonDS

You have now set up Ghidra to debug melonDS. Happy coding!

Revision #4
Created 16 April 2024 13:43:10 by Ndymario
Updated 14 April 2025 16:11:02 by Ndymario

https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/BeZimage.png
https://bookstack.nsmbcentral.net/uploads/images/gallery/2024-04/ED1image.png

